Abstract

This paper addresses the issue of fall detection from videos for e-healthcare and assisted-living. Instead of using conventional hand-crafted features from videos, we propose a fall detection scheme based on co-saliency-enhanced recurrent convolutional network (RCN) architecture for fall detection from videos. In the proposed scheme, a deep learning method RCN is realized by a set of Convolutional Neural Networks (CNNs) in segment-levels followed by a Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), to handle the time-dependent video frames. The co-saliency-based method enhances salient human activity regions hence further improves the deep learning performance. The main contributions of the paper include: (a) propose a recurrent convolutional network (RCN) architecture that is dedicated to the tasks of human fall detection in videos; (b) integrate a co-saliency enhancement to the deep learning scheme for further improving the deep learning performance; (c) extensive empirical tests for performance analysis and evaluation under different network settings and data partitioning. Experiments using the proposed scheme were conducted on an open dataset containing multicamera videos from different view angles, results have shown very good performance (test accuracy 98.96%). Comparisons with two existing methods have provided further support to the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call