Abstract
The ternary metal sulfide CoS2:Ni17S18:Al2S3 thin films were created in the presence of diethyldithiocarbamate as a sulfur source, pursued by physical vapour deposition. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-visible spectrophotometer, and Fourier transform infrared spectroscopy were used to identify and characterize the synthesised substances. The ternary metal sulfide had a mean crystallite size of 37.8 nm on the nanoscale. SEM revealed spherical particles with rounded edges particles. XPS presented Al 2p, Co 2p, Ni 2p and S 2p core level peaks of the elements. The ternary metal sulfide had a band gap energy of 3.49 eV. The phenomenal storage technology potential of the thin film was evaluated using cyclic voltammetry that revealed an astounding supercapacitance of 515 F g−1, demonstrating the material’s effectiveness. Voltammetric findings show the cycling stability of the nanoparticle thin film. Moreover, the photocatalytic degradation of contaminants such as methylene blue dye, pesticide zoxamide, and phenol was probed, with such a spectacular degradation rate constant of 4.11 × 10−2 min−1 with 91.5% degradation achieved for pesticide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.