Abstract

A mathematical model of COS hydrolysis on Al 2O 3, with fouling of catalyst, has been developed. Kinetic studies were carried out in a fixed bed reactor under atmospheric pressure and low temperature (40-70 °C). The effects of the COS inlet concentration, temperature, and relative humidity were analyzed. Experimental results of breakthrough curves were used to obtain kinetic parameters, which accounted for effects of S deposition on the inner-face of the catalyst. The model described the experimental breakthrough curves satisfactorily and well explained the performance of COS hydrolysis in the presence of oxygen. The exothermic heat of adsorption and activation energy, assuming Arrhenius type of temperature dependence of the equilibrium constant, were determined. Activation energy of COS hydrolysis and H 2S oxidation were 35.9 kJ/mol, 19.6 kJ/mol; adsorption heat of H 2O and H 2SonAl 2O 3 were 45.1 and 60.1 kJ/mol respectively. Deactivation coefficient (α) was used to quantify the behavior of COS hydrolysis at different operating conditions. The effect of relative humidity on α is significant in the relative humidity range under study. Experimental data accorded well with model data in the studied range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.