Abstract

BackgroundIn recent years, the morbidity of Alzheimer's disease in the world has become more and more serious. Therefore, it is an important means to find new drugs for treating AD from traditional medicines. It was found that Corydalis edulis Maxim. has a significant effect in the treatment of Alzheimer's disease (AD) in traditional application. In this work, we evaluated the efficacy of Corydalis edulis Maxim. total alkaloids (CETA) in AD model rats. MethodsIn this work, CETA was prepared by alkali extraction and acid precipitation, 11 alkaloids were identified by UPLC-MS/MS from CETA. AD model rats induced with D-galactose (D-gal) for 7 weeks. In modeling, the different doses of CETA (5, 20 mg/kg/Day) were continuously administered. Firstly, the change of the cognitive function, behavior, brain tissue pathology, and the activity of ROS, MDA, SOD, IL-1β, TNF-α and CAT in rat hippocampal homogenate was measurement. Finally, the protein expression of Aβ, microtubule-associated protein 2 (MAP2) and nuclear factor (κBp65) in rat brain was measurement. ResultCETA was found to have the activity in regulating AD. Compared with the normal control group, the levels of SOD and CAT in the hippocampus of the AD model group were decreased, and the level of ROS, MDA, IL-1β and TNF-α was increased. The protein expression of Aβ, and NF-κB were increased, and MAP2 were decreased. After treatment by CETA, the levels of SOD and CAT in hippocampus of AD model rats was significantly increased, ROS, MDA, IL-1β and TNF-α were significantly decreased. The protein expression of Aβ, and NF-κB were decreased, and MAP2 were increased. ConclusionCETA can improve the learning and memory ability in AD model. The mechanism may be achieved by regulating the oxidative stress and inflammatory of AD rats, inhibiting the protein expression levels of Aβ, and NF-κB, and promote the protein expression the levels of MAP2. Among them, 5 mg/kg is more effective than 20 mg/kg of CETA. Therefore, the therapeutic potential of CETA has been confirmed by our research, which may be a valuable drug for the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.