Abstract

Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin [5-hydroxytryptamine (5-HT)] system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and -R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch-clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non-5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be primarily an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT, and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.