Abstract

Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are expressed in cells of the immune system where they exert immunomodulatory roles, but these neuropeptides are poorly characterized in human immune tissues. The aim of this study was to determine concentrations and distribution of CRH and AVP in nonactivated human peripheral blood mononuclear cells (PBMC). PBMC from normal human subjects were separated into enriched subpopulations of T and B cells and monocytes/macrophages by a magnetic bead/monoclonal antibody technique. CRH and AVP were measured in cell extracts by radioimmunoassay (RIA). CRH-immunoreactivity (ir) ranged 0.24-0.8 fmol/million cells (n = 6 subjects) in T cell extracts, 0.4-2.7 fmol/million cells (n = 4) in B cells and 0.63-2.16 fmol/million cells (n = 4) in macrophages. AVP-ir ranged 0.2-0.95 fmol/million cells in T cell extracts, <0.1-0.8 fmol/million cells in B cells and 0.14-3.19 fmol/million cells in macrophages. Reversed-phase high-performance liquid chromatography (HPLC) of T and B cell extracts revealed a peak of CRH-ir which coeluted with synthetic CRH-41; this peak was not present in macrophages. A second peak of CRH-ir which eluted in a more hydrophobic position was observed in extracts of T and B cells and macrophages. This unidentified form of CRH-ir is the predominant form of CRH-ir in nonactivated human PBMC. This is the first study to demonstrate that CRH-ir and AVP-ir are colocalized within human T cells, B cells and monocytes/macrophages. We have confirmed observations of a variant form of CRH-ir in human PBMC and show that this is the predominant form in macrophages and B cells whereas CRH-ir, which coelutes with CRH(1-41) on HPLC, is present in significant amounts only in T cells. These data also confirm that CRH-ir in human PBMC is not urocortin because the antiserum used in the CRH RIA does not bind to urocortin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.