Abstract

Immunoreactive and bioactive corticotropin-releasing factor has been identified in the adrenal gland of dogs, rats and humans. Radioimmunoassay and immunohistochemical experiments have clearly demonstrated that localization of the peptide is confined to the adrenal medulla. CRF-containing cells have a characteristic appearance and are often found in close association with blood vessels. Electron microscopic studies suggest that CRF is secreted at blood vessels within the adrenal medullary vasculature. CRF has also been identified in pheochromocytomas. The amount of the peptide made by such tumors is highly variable as the CRF content of pheochromocytomas may be 20 to 100 times higher or lower than that of normal adrenal tissue. The pathophysiological importance of CRF in pheochromocytomas is unknown. Excessive secretion of the peptide into the peripheral circulation may cause prolonged activation of the pituitary adrenal axis. The peptide may also act within the tumor, although its role remains obscure. Studies on chronically cannulated, awake dogs have shown that CRF is secreted into adrenal venous blood. A gradient exists between adrenal venous and peripheral arterial blood, as CRF is undetectable peripherally under resting conditions. Hemorrhage, a hemodynamic stimulus known to activate a sympathetic adrenal response, increases the CRF secretory rate. The time course of CRF secretion in response to this stimulus parallels that of epinephrine secretion. The physiological significance of adrenal medullary CRF remains to be determined. Although CRF has been shown to affect catecholamine secretion, the peptide appears to be only a weak secretagogue for catecholamines. We suggest that CRF may affect local blood flow within the adrenal medulla and may modify catecholamine secretory rates via this mechanism. The localization of CRF cells in close apposition to blood vessels supports this hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.