Abstract

The mammalian striatum receives its main excitatory input from the two types of cortical pyramidal neurons of layer 5 of the cerebral cortex – those with only intratelencephalic connections (IT-type) and those sending their main axon to the brainstem via the pyramidal tract (PT-type). These two neurons types are present in layer 5 of all cortical regions, and thus they appear to project together to all parts of striatum. These two neuron types, however, differ genetically, morphologically, and functionally, with IT-type neurons conveying sensory and motor planning information to striatum and PT-type neurons conveying an efference copy of motor commands (for motor cortex at least). Anatomical and physiological data for rats, and more recent data for primates, indicate that these two cortical neuron types also differ in their targeting of the two main types of striatal projection neurons, with the IT-type input preferentially innervating direct pathway neurons and the PT-type input preferentially innervating indirect pathway striatal neurons. These findings have implications for understanding how the direct and indirect pathways carry out their respective roles in movement facilitation and movement suppression, and they have implications for understanding the role of corticostriatal synaptic plasticity in adaptive motor control by the basal ganglia.

Highlights

  • The so-called direct and indirect pathway model of basal ganglia function has provided a framework for understanding normal basal ganglia function, and explaining the pathophysiology of ballismus, Parkinson’s disease (PD) and Huntington’s disease (HD) (Albin et al, 1989; DeLong, 1990)

  • The cerebral cortex has a massive input to striatum, no consideration was given to how direct and indirect pathway striatal neurons might differ in their cortical input, a key issue in explaining the differing roles of these two striatal outputs in motor control

  • Since axospinous intratelencephalically projecting type (IT-type) terminals differ from pyramidal tract (PT)-type in size, we examined in rats if axospinous synaptic terminals differed in size on these two striatal projection neuron types

Read more

Summary

Introduction

The so-called direct and indirect pathway model of basal ganglia function has provided a framework for understanding normal basal ganglia function, and explaining the pathophysiology of ballismus, Parkinson’s disease (PD) and Huntington’s disease (HD) (Albin et al, 1989; DeLong, 1990). Recent LM studies suggest that primate striatum as well receives input from IT-type and PT-type cortical neurons possessing similar laminar location and extracortical projection patterns as in rats (Parent and Parent, 2006).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.