Abstract

Glucocorticoid (GC) hormones have traditionally been interpreted as indicators of stress, but the extent to which they provide information on physiological state remains debated. GCs are metabolic hormones that amongst other functions ensure increasing fuel (i.e. glucose) supply on the face of fluctuating energetic demands, a role often overlooked by ecological studies investigating the consequences of GC variation. Furthermore, because energy budget is limited, in natural contexts where multiple stimuli coexist, the organisms' ability to respond physiologically may be constrained when multiple triggers of metabolic responses overlap in time. Using free-living spotless starling (Sturnus unicolor) chicks, we experimentally tested whether two stimuli of different nature known to trigger a metabolic or GC response, respectively, cause a comparable increase in plasma GCs and glucose. We further tested whether response patterns differed when both stimuli occurred consecutively. We found that both experimental treatments caused increases in GCs and glucose of similar magnitude, suggesting that both variables fluctuate along with variation in energy expenditure, independently of the trigger. Exposure to the two stimuli occurring subsequently did not cause a difference in GC or glucose responses compared with exposure to a single stimulus, suggesting a limited capacity to respond to an additional stimulus during an ongoing acute response. Lastly, we found a positive and significant correlation between plasma GCs and glucose after the experimental treatments. Our results add to the increasing research on the role of energy expenditure on GC variation, by providing experimental evidence on the association between plasma GCs and energy metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.