Abstract

Background and ObjectiveSevere courses of COVID-19 disease can lead to long-term complications. The post-acute phase of COVID-19 refers to the persistent or new symptoms. This problem is becoming more relevant with the increasing number of patients who have contracted COVID-19 and the emergence of new virus variants. In this case, preventive treatment with corticosteroids can be applied. However, not everyone benefits from the treatment, moreover, it can have severe side effects. Currently, no study would analyze who benefits from the treatment. MethodsThis work introduces a novel approach to the recommendation of Corticosteroid (CS) treatment for patients in the post-acute phase. We have used a novel combination of clinical data, including blood tests, spirometry, and X-ray images from 273 patients. These are very challenging to collect, especially from patients in the post-acute phase of COVID-19. To our knowledge, no similar dataset exists in the literature. Moreover, we have proposed a unique methodology that combines machine learning and deep learning models based on Vision Transformer (ViT) and InceptionNet, preprocessing techniques, and pretraining strategies to deal with the specific characteristics of our data. ResultsThe experiments have proved that combining clinical data with CXR images achieves 8% higher accuracy than independent analysis of CXR images. The proposed method reached 80.0% accuracy (78.7% balanced accuracy) and a ROC-AUC of 0.89. ConclusionsThe introduced system for CS treatment prediction using our neural network and learning algorithm is unique in this field of research. Here, we have shown the efficiency of using mixed data and proved it on real-world data. The paper also introduces the factors that could be used to predict long-term complications. Additionally, this system was deployed to the hospital environment as a recommendation tool, which admits the clinical application of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.