Abstract

To improve the quality of reproduction in Eurasian perch, Perca fluviatilis L., which is a promising candidate for Eurasian freshwater aquaculture that is currently cultivated in recirculating aquaculture systems (RAS), investigating the hormones that mediate and affect reproduction in this species is indispensable. The literature defines a group of four major corticosteroids (11-deoxycorticosterone, 11-deoxycortisol, corticosterone and cortisol) that might mediate critical stages of reproduction in female perch. Unfortunately, neither the basic roles nor the kinetics of these four corticosteroids throughout the reproductive cycle of female perch have been well defined to date. In this study, we therefore elucidated the plasma kinetics of these four corticosteroids during the reproductive cycle of domesticated female perch while monitoring the expression of the different receptors and enzymes that mediate their production and possible functions. Additionally, we performed an invitro experiment during late vitellogenesis to investigate the possible direct roles of these steroids during that stage. Our results revealed that these four corticosteroids were detectable throughout the reproductive cycle, and the levels of most of them (11-deoxycorticosterone, 11-deoxycortisol, and cortisol) fluctuated significantly depending on the stage of reproduction. 11-Deoxycorticosterone and 11-deoxycortisol exhibited their highest levels, 1.8ng/ml and 58ng/ml, respectively, at the beginning of the reproductive cycle. By the end of the reproductive cycle, 11-deoxycortisol and cortisol plasma levels exhibited a surge, reaching 58ng/ml and 150ng/ml, respectively. During the perch reproductive cycle, the corticosteroid receptor complex is not regulated only at the hormone level, as the expression levels of all corticosteroid receptor genes showed a progressive and similar decline. In vitro exposure of vitellogenic oocytes to some of these corticosteroids (11-deoxycorticosterone and 11-deoxycortisol) induced an increase in yolk globule diameter and a decrease in the density of yolk globules, which indicates the involvement of both of these hormones in yolk globule coalescence. Taken together, these results implicate corticosteroids in the reproductive cycle, although the related cellular mechanisms remain to be investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.