Abstract

Arteriovenous malformations (AVMs) can lead to distortion or reorganization of functional brain anatomy, making localization of eloquent white matter tracts challenging. To improve the accuracy of corticospinal tract (CST) mapping, recent studies have examined the use of functional imaging techniques to help localize cortical motor activations and use these as seed points to reconstruct CSTs using diffusion-tensor imaging (DTI). The authors examined the role of pretreatment functionally guided DTI CST mapping in 3 children with ruptured AVMs. In 2 patients, magnetoencephalography motor activations were adjacent to the nidus and/or hemorrhagic cavity. However, in 1 child, functional MRI motor activations were detected in both hemispheres, suggestive of partial transfer of cortical motor function. In all children, quantitative analysis showed that fractional anisotropy values and fiber density indices were reduced in the CSTs of the hemisphere harboring the AVM compared with the unaffected side. In 2 children, CST caliber was slightly diminished, corresponding to no motor deficit in 1 patient and a temporary motor deficit in the other. In contrast, 1 child demonstrated marked reduction and displacement of the CSTs, correlating with severe motor deficit. Preoperative motor tractography data were loaded onto the intraoperative neuronavigation platform to guide complete resection of the AVM in 2 cases without permanent neurological deficits. These preliminary results confirm the feasibility of CST mapping in children with ruptured AVMs using functionally guided DTI tractography. Prospective studies are needed to assess the full value of this technique in the risk stratification, prognosis, and multimodality management of pediatric AVMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call