Abstract
We examined changes in the expression of major cytoskeletal protein mRNAs in adult hamster corticospinal neurons after axotomy. While a number of studies had determined that peripheral neurons exhibit major alterations in cytoskeletal gene expression after axotomy, no previous studies had addressed the question of whether or not intrinsic mammalian CNS neurons, which do not have the ability to successfully regenerate axons after injury, alter their expression of tubulin and neurofilament genes after injury. In the present study we used in situ hybridization methods to examine this issue. 35S-labeled cDNA probes for the low molecular weight neurofilament protein (NF-L) mRNA and an alpha-tubulin mRNA species (M alpha 1) were used for in situ hybridizations of sections of the sensorimotor cortex obtained 2, 7, and 14 days after unilateral axotomy of the corticospinal tract in the caudal medulla. Film as well as emulsion autoradiography showed dramatic decreases in both alpha-tubulin and NF-L mRNA levels within axotomized neurons in layer Vb of the sensorimotor cortex. Tubulin mRNA levels were decreased as early as 2 days after injury whereas NF-L mRNA levels were not decreased until later times. Ribosomal RNA (rRNA) levels in axotomized corticospinal neurons were also examined using in situ hybridization with a 35S-labeled rDNA probe. These studies showed only a slight decrease in rRNA levels in corticospinal neurons at 14 days after axotomy. Immunoblotting experiments of total protein from corticospinal axons in the medulla were performed to assess whether the axonal composition immediately proximal to the injury site reflected changes in cell body gene expression. Both alpha-tubulin and NF-L levels were found to decrease in corticospinal axons by 28 days after injury. These findings, to our knowledge, are the first to demonstrate that a class of mammalian CNS neurons have an intrinsically different cytoskeletal response to axonal injury than do PNS neurons. The failure to upregulate tubulin gene expression following injury may contribute to the ineffective regenerative response of these long-tract CNS neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.