Abstract

Muscle stretching effect on the range of motion (ROM) and force deficit in non-stretched muscle, and the underlying mechanisms, is an ongoing issue. This study aimed to investigate crossover stretching effects and mechanisms on the plantar flexor muscles. Fourteen recreationally active females (n = 5) and males (n = 9) performed six sets of 45-s static stretching (SS) (15-s recovery) to the point of discomfort of the dominant leg (DL) plantar flexors or control (345-s rest). Participants were tested for a single 5-s pre- and post-test maximal voluntary isometric contraction (MVIC) with each plantar flexor muscle and were tested for DL and non-DL ROM. They were tested pre- and post-test (immediate, 10-s, 30-s) for the Hoffman (H)-reflex and motor-evoked potentials (MEP) from transcranial magnetic stimulation in the contralateral, non-stretched muscle. Both the DL and non-DL-MVIC force had large magnitude, significant (↓10.87%, p = 0.027, pƞ2 = 0.4) and non-significant (↓9.53%, p = 0.15, pƞ2 = 0.19) decreases respectively with SS. The SS also significantly improved the DL (6.5%, p < 0.001) and non-DL (5.35%, p = 0.002) ROM. The non-DL MEP/MMax and HMax/MMax ratio did not change significantly. Prolonged static stretching improved the stretched muscle's ROM. However, the stretched limb's force was negatively affected following the stretching protocol. The ROM improvement and large magnitude force impairment (statistically non-significant) were transferred to the contralateral muscles. The lack of significant changes in spinal and corticospinal excitability confirms that the afferent excitability of the spinal motoneurons and corticospinal excitability may not play a substantial role in non-local muscle's ROM or force output responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.