Abstract

Motor imagery (MI), the mental simulation of an action, influences the cortical, corticospinal, and spinal levels, despite the lack of somatosensory afferent feedbacks. The aim of this study was to analyze the effect of MI associated with somatosensory stimulation (SS) on the corticospinal and spinal excitabilities. We used transcranial magnetic stimulation and peripheral nerve stimulation to induce motor-evoked potentials (MEP) and H-reflexes, respectively, in soleus and medialis gastrocnemius (MG) muscles of the right leg. Twelve participants performed three tasks: (1) MI of submaximal plantar flexion, (2) SS at 65 Hz on the posterior tibial nerve with an intensity below the motor threshold, and (3) MI + SS. MEP and H-reflex amplitudes were recorded before, during, and after the tasks. Our results confirmed that MI increased corticospinal excitability in a time-specific manner. We found that MI + SS tended to potentiate MEP amplitude of the MG muscle compared to MI alone. We confirmed that SS decreased spinal excitability, and this decrease was partially compensated when combined with MI, especially for the MG muscle. The increase of CSE could be explained by a modulation of the spinal inhibitions induced by SS, depending on the amount of afferent feedbacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.