Abstract

Surgical reconstruction of the anterior cruciate ligament (ACL) and subsequent physical therapy can help athletes return to competition; however, re-injury rates remain disproportionately high due, in part, to lingering biomechanical and neurological factors that are not fully addressed during rehabilitation. Prior reports indicate that individuals exhibit altered electrical activity in both brain and muscle after ACL reconstruction (ACLR). In this investigation, we aimed to extend existing approaches by introducing a novel non-linear analysis of corticomuscular dynamics, which does not assume oscillatory coupling between brain and muscle: Corticomuscular cross-recurrence analysis (CM-cRQA). Our findings indicate that corticomuscular dynamics vary significantly between involved (injured) and uninvolved legs of participants with ACLR during voluntary isometric contractions between the brain and both the vastus medialis and lateralis. This finding points to a potential lingering neural deficit underlying re-injury for athletes after surgical reconstruction, namely the dynamical structure of neuromuscular (brain to quad muscle) coordination, which is significantly asymmetric, between limbs, in those who have ACLR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call