Abstract
We describe a real-time electroencephalography (EEG)-based brain-computer interface system for triaging imagery presented using rapid serial visual presentation. A target image in a sequence of nontarget distractor images elicits in the EEG a stereotypical spatiotemporal response, which can be detected. A pattern classifier uses this response to reprioritize the image sequence, placing detected targets in the front of an image stack. We use single-trial analysis based on linear discrimination to recover spatial components that reflect differences in EEG activity evoked by target versus nontarget images. We find an optimal set of spatial weights for 59 EEG sensors within a sliding 50-ms time window. Using this simple classifier allows us to process EEG in real time. The detection accuracy across five subjects is on average 92%, i.e., in a sequence of 2500 images, resorting images based on detector output results in 92% of target images being moved from a random position in the sequence to one of the first 250 images (first 10% of the sequence). The approach leverages the highly robust and invariant object recognition capabilities of the human visual system, using single-trial EEG analysis to efficiently detect neural signatures correlated with the recognition event.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.