Abstract

Previously we have shown that, during sleep, electrical and magnetic stimulation of areas of the stomach and small intestine evoked neuronal and EEG responses in various cortical areas. In this study we wanted to correlate natural myoelectrical activity of the duodenum with cortical neuronal activity, and to investigate whether there is a causal link between them during periods of slow-wave sleep. We have recorded the myoelectrical activity from the wall of the duodenum and activity of single neurons from three cortical visual areas in naturally sleeping cats and investigated causal interrelationship between these structures during slow-wave sleep. About 30% of the cortical neurons studied changed their firing rate dependent on the phases of the peristaltic cycle and demonstrated selectivity to particular pattern of duodenal myoelectrical activity during slow-wave sleep. This interrelationship was never seen when awake. This observation supports the hypothesis that, during sleep, the cerebral cortex switches from processing of exteroceptive and proprioceptive information to processing of interoceptive information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.