Abstract
Characterizing how the brain responds to stimuli has been a goal of sensory neuroscience for decades. One key approach has been to fit linear models to describe the relationship between sensory inputs and neural responses. This has included models aimed at predicting spike trains, local field potentials, BOLD responses, and EEG/MEG. In the case of EEG/MEG, one explicit use of this linear modeling approach has been the fitting of so-called temporal response functions (TRFs). TRFs have been used to study how auditory cortex tracks the amplitude envelope of acoustic stimuli, including continuous speech. However, such linear models typically assume that variations in the amplitude of the stimulus feature (i.e., the envelope) produce variations in the magnitude but not the latency or morphology of the resulting neural response. Here, we show that by amplitude binning the stimulus envelope, and then using it to fit a multivariate TRF, we can better account for these amplitude-dependent changes, and that this leads to a significant improvement in model performance for both amplitude-modulated noise and continuous speech in humans. We also show that this performance can be further improved through the inclusion of an additional envelope representation that emphasizes onsets and positive changes in the stimulus, consistent with the idea that while some neurons track the entire envelope, others respond preferentially to onsets in the stimulus. We contend that these results have practical implications for researchers interested in modeling brain responses to amplitude modulated sounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.