Abstract

ObjectiveStructural brain differences are found in adults and children with epilepsy, yet pediatric samples have been heterogeneous regarding seizure type, magnetic resonance imaging (MRI) findings, and hemisphere of seizure focus. This study examines whether cortical thickness and surface area differ between children with left-hemisphere focal epilepsy (LHE) and age-matched typically developing (TD) peers. We examined whether age differentially moderated cortical thickness between groups and if cortical thickness was associated with duration of epilepsy, seizure frequency, or neuropsychological functioning. MethodsThirty-five children with LHE and 35 TD children completed neuropsychological testing and 3T MR imaging. Neuropsychological measures included general intelligence and executive functioning. All MRIs were normal. Surface-based morphometric processing and analyses were conducted using FreeSurfer 6.0. Regression analyses compared age by cortical thickness differences between groups. Correlational analyses examined associations between cortical thickness in these areas with neuropsychological functioning or epilepsy characteristics. ResultsLeft-hemisphere focal epilepsy displayed decreased cortical thickness bilaterally compared to TD controls across 6 brain regions but no differences in surface area. Moderation analyses revealed quadratic relationships between age and cortical thickness for left frontoparietal-cingulate and right superior frontal regions. Higher performance intelligence quotient (IQ) (PIQ) and verbal IQ (VIQ) and fewer parent reported executive function problems were associated with greater cortical thickness in TD children. SignificanceChildren with LHE displayed thinner cortex extending beyond the hemisphere of seizure focus. The nonlinear pattern of cortical thickness across age occurring in TD children is not evident in the same manner in children with LHE. These differences in cortical thickness patterns were greatest in children 8–12 years old. Greater cortical thickness was associated with higher IQ and fewer executive control problems in daily activities in TD children. Thus, differences in cortical thickness in the absence of differences in surface area, suggest cortical thickness may be a sensitive proxy of subtle neuroanatomical changes that are related to neuropsychological functioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call