Abstract

This commentary describes important findings of the article published by Sheroziya and Timofeev in The Journal of Neuroscience in 2015. The authors use moderate cortical temperature change, local cooling or heating of somatosensory cortex, to modulate excitable states of the brain. These changes, under physiological conditions, result from neuromodulation, as well as other network effects. They report that cooling disrupts thalamocortical slow oscillations and induces an activated cortical state, while mild heating has the opposite effect and increases slow-wave rhythmicity. We evaluate these findings regarding their utility for inducing and investigating cortical state fluctuations, compare the results to physiologically occurring state changes, and put them into perspective with other discoveries in the field. Periods of rhythmic slow-wave activity during physiological slow-wave sleep or induced by anesthesia are characterized by a waxing and waning of spontaneous neuronal firing coordinated between cortex and thalamus. This activity is generated in the cortex but influences neuronal excitability and stimulus–response properties of neuronal networks throughout the brain (Steriade et al., 1993; Stroh et al., 2013; McGinley et al., 2015b). The corresponding low-frequency component of field potential recordings reflects alternating active states, in which cells are depolarized and synaptic activity is high, and silent states with hyperpolarized membrane potentials and low synaptic activity (Steriade et al., 2001; Timofeev et al., 2001). In contrast, waking is generally associated with continuous depolarization of cortical neurons, resulting in persistent activity (Destexhe et al., 2007; Sheroziya and Timofeev, 2015) and suppression of silent states (Steriade et al., 2001; McGinley et al., 2015b). In their recent study, Sheroziya and Timofeev (2015) demonstrated that moderate cortical cooling (to 29–31°C) of lightly ketamine/xylazin (ket/xyl) anesthetized or non-anesthetized mice reversibly diminished silent states and induced a persistent active state of the cortex. Mild heating (to 39–40°C), in contrast, increased …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.