Abstract

Although flattening a cortical surface necessarily introduces metric distortion due to the non-constant Gaussian curvature of the surface, the Riemann mapping theorem states that continuously differentiable surfaces can be mapped without angular distortion. We apply the so-called least-square conformal mapping approach to flatten a patch of the cortical surface onto planar regions and to produce spherical conformal maps of the entire cortex while minimizing metric distortion within the class of conformal maps. Our method, which preserves angular information and controls metric distortion, only involves the solution of a linear system and a nonlinear minimization problem with three parameters and is a very fast approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.