Abstract

Scalp EEG is an essential component of epilepsy presurgical evaluation during the lateralization and localization of epileptogenic focus. Scalp EEG epileptiform discharges may either guide direct surgical intervention or provide necessary information to further localize the epileptic focus with intracranial EEG recording. Despite the importance and widespread use of scalp EEG epileptiform discharges, the cortical EEG substrates underlying these spikes and seizure discharges are mostly speculative. Misconceptions are therefore prevalent regarding the necessary cortical area, synchrony, and amplitude required to generate those that are recordable at the scalp. Using contemporary EEG recording techniques such as simultaneous scalp and intracranial EEG recording, the authors' recent studies have shown that the cortical area of epileptiform discharges required for the scalp recording is considerably larger than commonly thought. A cortical area of 10 to 20 cm is often required to generate a scalp recognizable interictal spike or ictal rhythm. Sufficient cortical source area and synchrony are mandatory factors for the corresponding scalp EEG epileptiform recording. The amplitude is primarily dependent on source area and synchrony; therefore it is a less important factor. The authors review the previous literatures in conjunction with their recent investigations on this topic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call