Abstract

While the effect of cortex stimulation on pain control is widely accepted, its physiological basis remains poorly understood. We chose an animal model of pain to study the influence of sensorimotor cortex stimulation on tooth pulp stimulation evoked potentials (TPEPs). Fifteen awake rats implanted with tooth pulp, cerebral cortex, and digastric muscle electrodes were divided into three groups, receiving 60 Hz, 40 Hz and no cortical stimulation, respectively. TPEPs were recorded before, one, three and five hours after continuous stimulation. We observed an inverse relationship between TPEP amplitude and latency with increasing tooth pulp stimulation. The amplitudes of the early components of TPEPs increased and their latency decreased with increasing tooth pulp stimulation intensity. Cortical stimulation decreased the amplitude of TPEPs; however, neither the latencies of TPEPs nor the jaw-opening reflex were changed after cortical stimulation. The decrease in amplitude of TPEPs after cortical stimulation may reflect its anti-nociceptive effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.