Abstract
Cortical spreading depression (CSD) is able to confer neuroprotection when delivered at least 1 day in advance of an ischemic event. However, its ability to confer neuroprotection in a more immediate time frame has not previously been investigated. Here we have used mouse neocortical brain slices to study the effects of repeated episodes of CSD in layer V and layer II/III pyramidal neurons. In layer V, CSD evoked at 15-min intervals caused successively smaller membrane depolarizations and increases in intracellular calcium compared with the response to the first CSD. With an inter-CSD interval of 30 min this preconditioning effect was much less marked, indicating that preconditioning lasts between 15 and 30 min. A single episode of CSD also provided a degree of protection in oxygen-glucose deprivation (OGD) by significantly lengthening the time a cell could withstand OGD before anoxic depolarization occurred. In layer II/III pyramidal neurons no preconditioning by CSD on subsequent episodes of CSD was observed, demonstrating that the response of pyramidal neurons to repeated CSD is lamina specific. The A1 receptor antagonist 8-cyclopentyl theophylline (8-CPT) reduced the layer V preconditioning in a concentration-related manner. Inhibition of extracellular formation of adenosine by blocking ecto-5'-nucleotidase with α,β-methyleneadenosine 5'-diphosphate prevented preconditioning in most but not all cells. Block of equilibrative nucleoside transporters 1 and 2 with dipyramidole alone or in combination with 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine also prevented preconditioning in some but not all cells. These data provide evidence that rapid preconditioning of one CSD by another is primarily mediated by adenosine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.