Abstract

Auditory neuropathy spectrum disorder (ANSD) is a condition where cochlear amplification function (involving outer hair cells) is normal but neural conduction in the auditory pathway is disordered. This study was done to investigate the cortical representation of speech in individuals with ANSD and to compare it with the individuals with normal hearing. Forty-five participants including 21 individuals with ANSD and 24 individuals with normal hearing were considered for the study. Individuals with ANSD had hearing thresholds ranging from normal hearing to moderate hearing loss. Auditory cortical evoked potentials-through odd ball paradigm-were recorded using 64 electrodes placed on the scalp for /ba/-/da/ stimulus. Onset cortical responses were also recorded in repetitive paradigm using /da/ stimuli. Sensitivity and reaction time required to identify the oddball stimuli were also obtained. Behavioural results indicated that individuals in ANSD group had significantly lower sensitivity and longer reaction times compared to individuals with normal hearing sensitivity. Reliable P300 could be elicited in both the groups. However, a significant difference in scalp topographies was observed between the two groups in both repetitive and oddball paradigms. Source localization using local auto regressive analyses revealed that activations were more diffuses in individuals with ANSD when compared to individuals with normal hearing sensitivity. Results indicated that the brain networks and regions activated in individuals with ANSD during detection and discrimination of speech sounds are different from normal hearing individuals. In general, normal hearing individuals showed more focused activations while in individuals with ANSD activations were diffused.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call