Abstract

Cortical processes underlying perception of musical consonance were investigated by long-latency auditory evoked potentials (EPs). Subjects listened to a random sequence of dyadic pure tones paired at various pitch intervals (1, 4, 6, 7, or 9 semitones). Amplitudes of P2 and N2 components of auditory EPs were significantly modulated by pitch interval of the dyads, being most negative for 1 semitone (minor second) and least negative or most positive for 7 semitones (perfect fifth). The results indicate that neural processing of consonance depend not only on peripheral mechanisms in the inner ear but also on higher associative processing of pitch relationships in the cerebral cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.