Abstract

The disruption of cortical assembly activity has been associated with anesthesia-induced loss of consciousness. However, the relationship between cortical assembly activity and the variations in consciousness associated with natural vigilance states remains unclear. Here, we address this by performing vigilance state-specific clustering analysis on 2-photon calcium imaging data from the sensorimotor cortex in combination with global electroencephalogram (EEG) microstate analysis derived from multi-EEG signals obtained over widespread cortical locations. We report no difference in the structure of assembly activity during quiet wakefulness (QW), non-rapid eye movement sleep (NREMs), or REMs, despite the latter two vigilance states being associated with significantly reduced levels of consciousness relative to QW. However, we describe a significant coordination between global EEG microstate dynamics and general local cortical assembly activity during periods of QW, but not sleep. These results suggest that the coordination of cortical assembly activity with global brain dynamics could be a key factor of sustained conscious experience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call