Abstract
The aim of our work was to study the changes in activity, abundance and distribution of sodium, potassium-adenosine triphosphatase (Na<sup>+</sup>,K<sup>+</sup>-ATPase) in membranes of cortical tubular cells in an in vivo model of ischemic injury without reperfusion. Na<sup>+</sup>,K<sup>+</sup>-ATPase, alkaline phosphatase (AP) activities and their distribution in membranes isolated from renal cortex using a Percoll gradient were studied after different ischemic periods. Na<sup>+</sup>,K<sup>+</sup>-ATPase α-subunit protein abundance was analysed by Western-blot. Plasma urea and cortical adenosine 5’triphosphate (ATP) were also measured. In cortical homogenates 5 min of ischemia promoted a diminution in ATP content. Na<sup>+</sup>,K<sup>+</sup>-ATPase activity diminished after 40 min and AP after 100 min of ischemia. Na<sup>+</sup>,K<sup>+</sup>-ATPase activity in the Percoll gradient fractions after 5 min peaked at a higher density and was significantly decreased after 40 min. AP activity was decreased in typically enriched apical membranes after both times of ischemia. At each time studied Na<sup>+</sup>,K<sup>+</sup>-ATPase abundance was increased in cortical homogenates and membranes. Our results showed opposite effects of ischemia on Na<sup>+</sup>,K<sup>+</sup>-ATPase activity and abundance. Increased levels of Na<sup>+</sup>,K<sup>+</sup>-ATPase protein were observed. The enzyme would be rapidly delivered to membrane domains and become inactivated as ischemia persists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.