Abstract

The effect of bilateral section of the corticostriatal projections or of selective bilateral ablation of the frontal cortex on behavioral and biochemical parameters related to striatal function were investigated in the rat. Either lesion almost completely prevented the cataleptogenic action of haloperidol: this effect was observed as soon as 3 days and lasted for at least 3 months after surgery, paralleling a reduction in striatal glutamate uptake. Also, such lesions enhanced the apomorphine-induced stereotyped behavior (as measured 21 days after surgery). In the striatum, dopamine, dihydroxyphenylacetic acid, acetylcholine and substance P levels as well as choline acetyltransferase and glutamic acid decar☐ylase activities were unaffected 10 or 21 days after either type of lesion. In the substantia nigra, substance P levels were unchanged 10 days following suction of the frontal cortex, but glutamic acid decar☐ylase was reduced at 21 days postsurgery. Cortical lesions only partially prevented the reduction in striatal acetylcholine concentrations and did not affect the increase in striatal dihydroxyphenylacetic acid caused by haloperidol. Finally, lesions of the corticostriatal pathways failed to affect the apomorphine-induced increase in striatal acetylcholine levels, reduction of the potassium (20 mM) evoked [ 3H]acetylcholine release in striatal slices preloaded with [ 3H]choline and decrease of striatal dihydroxyphenylacetic acid concentrations. These findings indicate that the frontal cortex influences extrapyramidal function by a mechanism which — in behavioral terms — is antagonistic to dopamine-mediated events. As indicated by the biochemical data, this mechanism does not involve changes in striatal dopaminergic and cholinergic neuron activity. This mechanism may utilize: (1) corticostriatal glutamatergic neurons as suggested by the reduction in striatal glutamate uptake following lesions; and (2) GABAergic pathways as suggested by the reduction of nigral glutamic acid decar☐ylase activity as well as by the finding that GABA receptor agonists reinstate haloperidol-induced catalepsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.