Abstract

Neuropathic pain following spinal cord injury (SCI) affects approximately 60% of individuals with SCI. Effective pharmacological and non-pharmacological treatments remain elusive. We recently demonstrated that our immersive virtual reality walking intervention (VRWalk) may be effective for SCI NP. Additionally, we found that SCI NP may result from a decrease in thalamic γ-aminobutyric-acid (GABA), which disturbs central sensorimotor processing. While we identified GABAergic changes associated with SCI NP, a critical outstanding question is whether a decrease in SCI NP generated by our VRWalk intervention causes GABA content to rise. A subset of participants (n = 7) of our VRWalk trial underwent magnetic resonance spectroscopy pre- and post-VRWalk intervention to determine if the decrease in SCI NP is associated with an increase in thalamic GABA. The findings revealed a significant increase in thalamic GABA content from pre- to post-VRWalk treatment. While the current findings are preliminary and should be interpreted with caution, pre- to post-VRWalk reductions in SCI NP may be mediated by pre- to post-treatment increases in thalamic GABA by targeting and normalizing maladaptive sensorimotor cortex reorganization. Understanding the underlying mechanisms of pain recovery can serve to validate the efficacy of home-based VR walking treatment as a means of managing pain following SCI. Neuromodulatory interventions aimed at increasing thalamic inhibitory function may provide more effective pain relief than currently available treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call