Abstract
The effects of deep brain stimulation (DBS) on motor cortex circuitry in Essential tremor (ET) and Parkinson’s disease (PD) patients are not well understood, in part, because most imaging modalities have difficulty capturing and localizing motor cortex dynamics on the same temporal scale as motor symptom expression. Here, we report on the use of magnetoencephalography (MEG) to characterize sources of postural tremor activity within the brain of an ET/PD patient and the effects of bilateral subthalamic nucleus DBS on these sources. Recordings were performed during unilateral and bilateral DBS at stimulation amplitudes of 0 V, 1 V, and 3 V corresponding to no therapy, subtherapeutic, and therapeutic configurations, respectively. Dipole source localization in reference to the postural tremor frequency recorded with electromyography (EMG) showed prominent sources in both right and left motor cortices when no therapy was provided. These sources dissipated as the amplitude of stimulation increased to a therapeutic level (P = 0.0062). Coherence peaks between the EMG and MEG recordings were seen at both 4 Hz, postural tremor frequency, and at 8 Hz, twice the tremor frequency, with no therapy. Both peaks were reduced with therapeutic DBS. These results demonstrate the capabilities of MEG to record cortical dynamics of tremor during deep brain stimulation and suggest that MEG could be used to examine DBS in the context of motor symptoms of PD and of ET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.