Abstract

The cerebral cortex influences subcortical processing. In the somatosensory system, descending cortical inputs contribute in specific ways to the sizes and plasticity of tactile receptive fields (RFs) in the thalamus, but less is known about cortical influences on these aspects of brainstem RFs. The present studies evaluated how loss of cortical inputs affects sizes and plasticity of RFs in the brainstem dorsal column nuclei (DCN) when peripheral inputs were normal and when peripheral inputs were acutely disrupted. Loss of cortical inputs was produced by acute lesion of somatosensory, motor, and adjacent cortex, whereas disruption of peripheral inputs was produced by cutaneous microinjection of lidocaine (LID). Modest or no changes in sizes of DCN RFs, comparable to changes during control periods of no treatment, were seen in response to cortical lesion. LID caused rapid enlargements in RFs when cortex was intact. LID also caused rapid RF enlargements after cortical lesion, and these enlargements were greater than post-LID enlargements when cortex was intact. These results indicate that normally sized RFs continue to be produced in the DCN after loss of cortical input. Cortex is also not required for RF enlargements after LID; however, cortical inputs have a constraining effect on these enlargements. Considered with findings from previous thalamic studies, these results suggest that cortical influences on RF size and plasticity in the DCN and thalamus differ in some respects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.