Abstract

We tested the hypothesis that cerebral hypoperfusion after experimental global cerebral ischemia is caused by plugging of the microcirculation with activated leukocytes using in vivo microscopic observation of the behavior of leukocytes in the cortical microcirculation during the transition from postischemic hyperperfusion to hypoperfusion. Anesthetized and ventilated rats (n = 24) were equipped with a closed cranial window. Physiological variables and cortical regional cerebral blood flow (laser-Doppler flowmetry) were measured continuously. Leukocytes were labeled intravitally with rhodamine 6G and visualized in the microcirculation of the brain surface and outer layers of the cortex with confocal laser scanning microscopy from preischemia to 4 hours after reperfusion that followed 10 minutes of global cerebral ischemia (rCBF < 10% of control). In controls (n = 8), there were no signs of leukocyte activation over the 4-hour observation period. In ischemic rats (n = 16), during the transition from hyperperfusion to hypoperfusion there was no change in the behavior of leukocytes. Most notably, no capillary pluggers were seen. In the postischemic period only a slight increase of the number of leukocytes rolling along or sticking to the venular endothelium was seen, and very few capillaries were plugged by leukocytes. Extravasation of leukocytes into the brain tissue was observed in 8 rats beginning 2 hours after ischemia with a variable degree between animals. Because there was only mild activation of leukocyte-endothelium interaction within the first hours of reperfusion after 10 minutes of global forebrain ischemia, because no leukocytes plugged superficial cortical capillaries during the transition from hyperperfusion to hypoperfusion, and because the regional cerebral blood flow transition was very rapid, we speculate that leukocyte plugging is not responsible for the early cortical hypoperfusion seen after brief global ischemia in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.