Abstract

Multisensory stimulation plays an important role in the recovery of ischemic stroke. However, little is known about the interactions between neuronal activities with multi-afferent stimulations and their effects on hemodynamic responses. Optogenetics has been a useful tool in neuroscience research to unravel the mechanisms of neurovascular coupling at cell-specific level. In this study, we applied laser speckle contrast imaging (LSCI) to map the cortical hemodynamic response with high spatiotemporal resolution. The results showed that optogenetic inhibition of pyramidal neurons in sensorimotor cortex induced both local and distant increases of cerebral blood flow (CBF) with dual peaks, and the full width at half maximum (FWHM) was significantly larger than that of the CBF response to optogenetic excitation. Furthermore, optogenetic excitation of pyramidal neurons could significantly increase the local CBF response to sensory stimulation, whereas optogenetic inhibition of pyramidal neurons decreased the local CBF response at the early stage after sensory stimulation and increased the distant CBF response during the recovery period. Our work provided useful insights into the mechanisms of brain stimulation, which might help in clinical neurological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call