Abstract

Sleep deprivation leads to significant impairments in cognitive performance and changes to the interactions between large scale cortical networks, yet the hierarchical organization of cortical activity across states is still being explored. We used functional magnetic resonance imaging to assess activations and connectivity during cognitive tasks in 20 healthy young adults, during three states: (i) following a normal night of sleep, (ii) following 24hr of total sleep deprivation, and (iii) after a morning recovery nap. Situating cortical activity during cognitive tasks along hierarchical organizing gradients based upon similarity of functional connectivity patterns, we found that regional variations in task-activations were captured by an axis differentiating areas involved in executive control from default mode regions and paralimbic cortex. After global signal regression, the range of functional differentiation along this axis at baseline was significantly related to decline in working memory performance (2-back task) following sleep deprivation, as well as the extent of recovery in performance following a nap. The relative positions of cortical regions within gradients did not significantly change across states, except for a lesser differentiation of the visual system and increased coupling of the posterior cingulate cortex with executive control areas after sleep deprivation. This was despite a widespread increase in the magnitude of functional connectivity across the cortex following sleep deprivation. Cortical gradients of functional differentiation thus appear relatively insensitive to state-dependent changes following sleep deprivation and recovery, suggesting that there are no large-scale changes in cortical functional organization across vigilance states. Certain features of particular gradient axes may be informative for the extent of decline in performance on more complex tasks following sleep deprivation, and could be beneficial over traditional voxel- or parcel-based approaches in identifying realtionships between state-dependent brain activity and behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.