Abstract

Objective: Water and nutrients are required for plant growth and development. Transport of water and nutrients from the roots to the shoots occurs in the xylem vessel. Acetylsalicylic acid (ASA) and sodium nitroprusside (SNP) play important roles in plant growth regulation. However, limited information is known about the relationship between SNP and ASA and leaf anatomy. Therefore, the current study was performed to evaluate the hypothesis that ASA and SNP improve leaf cortex and xylem anatomy and chlorophyll biosynthesis in peach. Material and Methods: In the study, the roots of two-year-old peach (Prunus persica (L.) Batsch) cv. Rich May grafted onto GF 677 were treated with 1 mM SNP and 1 mM ASA (except control) through irrigation. One month after the treatments, many leaf histological responses and chlorophyll biosynthesis were evaluated. Results: Both treatments increased stomatal conductance compared to control. Chlorophyll biosynthesis was influenced by the treatments. SNP and ASA increased the concentrations of the chlorophyll precursors compared to control. ASA increased cortex thickness by increasing the number of cortex cell layers. Thus, ASA can affect leaf cell division. Furthermore, SNP and ASA can enhance xylem conduits width. Conclusion: Improvement in xylem conduits may help plants under stress conditions. Therefore, SNP and ASA may be used to improve nutrient and water uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call