Abstract

The purpose of our study was to test the hypothesis that the electromagnetic pulse (EMP) is capable of inducing mechanical vibrations in bone <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ex vivo</i> . A thin segment of human femur diaphysis (from a tissue repository) suspended on a tensioned line (range <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T =$ </tex-math></inline-formula> 2.2–123 N) was exposed to EMP (mean <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$B =0.64$ </tex-math></inline-formula> T, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dB</i> / <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dt</i> = 5877 T/s, and the mean <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$B$ </tex-math></inline-formula> -field gradient of 127 T/m) from a solenoid with axis orthogonal to tensioning line, forming a harmonic oscillator whose mechanical vibrations were measured using laser Doppler vibrometry (LDV, noise floor 1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> /s). Calculated mean Maxwell stress and Lorentz forces acting on a weakly conducting, diamagnetic bone slice point away from the solenoid for maximum sensitivity of LDV measurement. The electromechanical origin of the LDV signal was confirmed by the order-of-magnitude agreement between calculated (range from 12 to 50 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> /s) and measured initial bone velocity amplitudes (e.g., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$35.5~\mu \text{m}$ </tex-math></inline-formula> /s ± <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$7.5~\mu \text{m}$ </tex-math></inline-formula> /s at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T =22.2$ </tex-math></inline-formula> N and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$17.7~\mu \text{m}$ </tex-math></inline-formula> /s ± <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.5~\mu \text{m}$ </tex-math></inline-formula> /s at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T =58.2$ </tex-math></inline-formula> N) and the increasing frequency (25–180 Hz) of decaying oscillations with the square root of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> over the range of line tensions ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$r^{2} =0.978$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p &lt; 10^{-4}$ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n =17$ </tex-math></inline-formula> ). Theory and experiment show that magnetic field impulses are capable of exerting measurable mechanical forces on bone <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ex vivo</i> . The results raise an interesting question if the electromechanical effect could be sufficiently large to contribute to bone remodeling, reportedly sensitive to vibration amplitudes as small as 1 nm, and considering long duration of orthopedic therapy using repetitive EMP (months).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.