Abstract

Aldehyde dehydrogenase 2 (ALDH2) is the enzyme that degrades and detoxifies the acetaldehyde produced by alcohol metabolism. In our previous study, we found that compared with wild-type mice (WT), climbing exercises did not increase trabecular bone mass in Aldh2 knockout mice (KO). The purpose of this study was to clarify the effect of the Aldh2 gene on cortical bone structure and on the dynamics of skeletal unloading. Eight-week-old male KO and WT were divided into ground control (GC) or tail suspension (TS) groups for one week (i.e., the KOGC, KOTS, WTGC and WTTS groups). We measured the bone mineral density (BMD) of the femur using dual-energy X-ray absorptiometry. We assessed the femoral morphometry using peripheral quantitative computed tomography (pQCT) and evaluated the femoral cortex histomorphometry, and cortical mRNA using quantitative RT-PCR and cortical bone immunohistostaining. No significant differences were found between the femoral BMD of WTGC and that of WTTS, but the BMD in KOTS was significantly lower than that of KOGC. The pQCT results revealed that the cortical BMD of the femoral diaphysis in KOTS was significantly lower than that of KOGC. Furthermore, the cortical bone area and cortical thickness were significantly lower in KOTS than in the other three groups. Cortical histomorphometric analysis revealed that the endosteal and periosteal bone formation parameters were significantly lower in KOTS than in KOGC. Bone formation signals such as parathyroid hormone receptor (PTHR) were significantly decreased in KOTS compared with the levels in KOGC. Cortical bone immunohistostaining revealed a significantly decreased expression of PTHR in the osteocytes of KOTS compared with the expression level in KOGC. Thus, we concluded that when the Aldh2 gene is disrupted, skeletal unloading suppresses bone formation to decrease cortical bone mass, which may be mediated by a decreased expression of PTH receptors in osteocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.