Abstract

Cortical areas in rodents have been basically characterized by its cytoarchitecture, connectivity or by physiological parameters. In this study we show that they are also revealed by distribution patterns of proteoglycans and parvalbumin-immunoreactivity. Brains of young adult Mongolian gerbils ( Meriones unguiculatus) and Wistar rats were cut into series of transversal sections. Proteoglycan components were detected using the N-acetylgalactosamine binding Wisteria floribunda agglutinin (WFA) and antibodies against chondroitin sulphate proteoglycan (CSPG). Differences between cortical areas were found to exist with regard to the occurrence and the density of perineuronal nets, but were also expressed in varying staining intensities for WFA and CSPG of the neuropil. Primary neocortical areas (somatosensory, auditory, visual cortex) were characterized by an intense neuropil staining in layer IV and the upper part of layer VI. Using the same methods strong labelling was also typical of the neuropil in the retrosplenial cortex, of layer Ia in the prepiriform cortex and the hippocampal CA3 field. In tangential sections cut from gerbil cortical hemispheres, some of the heavily lectin-stained cortical areas were sharply delineated from adjacent faintly labelled regions, others showed more diffuse borders. In the rat, the area-specific staining for WFA was less clearly expressed than in the gerbil. Immunocytochemistry of the calcium-binding protein parvalbumin in alternate sections showed labelling patterns of neuropil which resembled those of WFA-binding and CSPG-immunoreactivity in the entire neocortex and hippocampus. From these results it can be concluded that functional peculiarities of cortical fields may not only be determined by neuronal network parameters but also by the spatial arrangement of extracellular matrix proteoglycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.