Abstract

Inhibition is a core executive cognitive function. However, the neural correlates of non-motor inhibitory control are not well understood. We investigated this question using functional Magnetic Resonance Imaging (fMRI) and a simple Count Go/NoGo task (n = 23), and further explored the causal relationships between activated brain regions. We found that the Count NoGo task activated a distinct pattern in the subcortical basal ganglia, including bilateral ventral anterior/lateral nucleus of thalamus (VA/VL), globus pallidus/putamen (GP/putamen), and subthalamic nucleus (STN). Stepwise regressions and mediation analyses revealed that activations in these region(s) were modulated differently by only 3 cortical regions i.e. the right inferior frontal gyrus/insula (rIFG/insula), along with left IFG/insula, and anterior cingulate cortex/supplementary motor area (ACC/SMA). The activations of bilateral VA/VL were modulated by both rSTN and rIFG/insula (with rGP/putamen as a mediator) independently, and the activation of rGP/putamen was modulated by ACC/SMA, with rIFG/insula as a mediator. Our findings provide the neural correlates of inhibitory control of counting and causal relationships between them, and strongly suggest that both indirect and hyperdirect pathways of the basal ganglia are involved in the Count NoGo condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call