Abstract

The classical cortico-reticular theory on absence epilepsy suggests that a hyperexcitable cortex is a precondition for the occurrence of absence seizures. In the present experiment seizure thresholds and characteristics of cortical and limbic epileptic afterdischarges (AD) were determined in a comparative cortical stimulation study in young and old adult genetically epileptic WAG/Rij, congenic ACI and Wistar rats. Fifteen-second series of 8 Hz stimulation of the sensory-motor cortex were applied in 80- and 180-day-old rats with implanted electrodes. Strain differences were found for the threshold for movements directly induced by stimulation, low frequency spike-and-wave AD, maximal clonic intensity of seizures accompanying direct stimulation, and frequency characteristics of low frequency AD. None of these results agreed with a higher cortical excitability exclusively in WAG/Rij rats. However, WAG/Rij rats had the longest duration of the low frequency AD, and the lowest threshold for the transition to the limbic type of AD. The decrease of this threshold correlated with the increase of the incidence and total duration of spontaneous SWDs in WAG/Rij rats. It is concluded that the elevated excitability of the limbic system or pathways mediating the spread of the epileptic activity into this system can be attributed to the development of genetic epileptic phenotype in WAG/Rij rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.