Abstract

Children with an Autism Spectrum Condition (ASC) have social communication and perceptuomotor difficulties that affect their ability to engage in dyadic play. In this study, we compared spatio-temporal errors and fNIRS-related cortical activation between children with and without an ASC during a Lincoln Log dyadic game requiring them to play leader or follower roles, move in synchrony or while taking turns, and move cooperatively or competitively with an adult partner. Children with an ASC had greater motor, planning, and spatial errors and took longer to complete the building tasks compared to typically developing (TD) children. Children with an ASC had lower superior temporal sulcus (STS) activation during Turn-take and Compete, and greater Inferior Parietal Lobe (IPL) activation during Lead and Turn-take compared to TD children. As dyadic play demands increased, TD children showed greater STS activation during Turn-take (vs. Synchrony) and Compete (vs. Cooperate) whereas children with an ASC showed greater IPL activation during Lead and Compete (vs. Cooperate). Our findings suggest that children with an ASC rely on self-generated action plans (i.e., increased IPL activation) more than relying on their partner’s action cues (i.e., reduced STS activation) when engaging in dyadic play including joint actions and competition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call