Abstract

Human mobility requires neurocognitive inputs to safely navigate the environment. Previous research has examined neural processes that underly walking using mobile neuroimaging technologies, yet few studies have incorporated true real-world methods without a specific task imposed on participants (e.g., dual-task, motor demands). The present study included 40 young adults (M = 22.60, SD = 2.63, 24 female) and utilized mobile electroencephalography (EEG) to examine and compare theta, alpha, and beta frequency band power (μV2) during sitting and walking in laboratory and real-world environments. EEG data was recorded using the Muse S brain sensing headband, a portable system equipped with four electrodes (two frontal, two temporal) and one reference sensor. Qualitative data detailing the thoughts of each participant were collected after each condition. For the quantitative data, a 2 × 2 repeated measures ANOVA with within subject factors of environment and mobility was conducted with full participant datasets (n = 17, M = 22.59, SD = 2.97, 10 female). Thematic analysis was performed on the qualitative data (n = 40). Our findings support that mobility and environment may modulate neural activity, as we observed increased brain activation for walking compared to sitting, and for real-world walking compared to laboratory walking. We identified five qualitative themes across the four conditions 1) physical sensations and bodily awareness, 2) responsibilities and planning, 3) environmental awareness, 4) mobility, and 5) spotlight effect. Our study highlights the importance and potential for real-world methods to supplement standard research practices to increase the ecological validity of studies conducted in the fields of neuroscience and kinesiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.