Abstract

Neonatal hypoxia induces brain injury through alterations in neurotransmitters and its receptors. Molecular processes regulating serotonergic receptors play an important role in the control of respiration under hypoxia. The present study evaluates the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the cerebral cortex of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen, and epinephrine. Hypoxic stress increased total 5HT and 5HT(2A) receptor number along with an upregulation of 5HT(2A) receptor and 5HT transporter gene in the cortex. The enhanced cortical 5HT(2A) receptors may act as a modulator of ventilatory response to hypoxia. These alterations were reversed to near control by glucose supplementation. Glucose supplementation helped in managing the serotonergic functional alterations. Hypoxia-induced adenosine triphosphate depletion causes a reduction in blood glucose levels which can be encountered by glucose administration, and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call