Abstract
Nanopowder of iron oxide (mainly Fe3O4) has been obtained by electroerosion dispersion method and was used for manufacturing of gradient polymer-based microwave absorbing materials which absorb (1) on 36.6 GHz with a level of absorption of 99% (with a maximum penetration −40 dB and reflection −23 dB) and (2) on 10 GHz and 36.6 GHz with an absorption of 90% and 98.4%, correspondently (with a maximum reflection −18 dB and −10 dB and penetration −40 dB and −60 dB, respectively). It was demonstrated, that change of magnetic properties of the absorbing material under mechanical load can be used for non-destructive control. Sintered under high pressure-high temperature conditions (2 GPa, at 900, 1000, 1100, 1200 and 1300 °C for 4 min) iron oxide nanopowder in presence of hexagonal boron nitride (hBN) demonstrated soft magnetic behavior. Electron Backscatter Diffraction (EBSD) study has showed that during sintering the grains have grown beyond the superparamagnetic size limit inspire short annealing time. The structure of sintered materials was investigated using X-ray diffraction with a full-profile fitting procedure. The materials sintered at 2 GPa at 900 and 1000 °C contained 75–80 wt% of FeO and 25–20 wt% Fe. Materials sintered at 1100 oC, along with 32 wt% FeO and 2 wt% Fe, contained a significant amount of Fe3N: 66 wt%. However, materials sintered at 1200–1300 °C contain almost pure Fe3N phase. Thus, under conditions of high pressures and temperatures with increasing sintering temperature, reduction of iron oxide was observed, followed by its nitriding with nitrogen released from the boron nitride, which led to a reduction of coercive force and thus improving soft magnetic characteristics of the sintered materials. The scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) study of the sample, sintered at 1300 oC showed approximate composition of Fe3N0.8C0.3-0.6O0.06-0.3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.