Abstract

In the recent study, accumulative roll bonding (ARB) and powder metallurgy processes are used as a combined technique to fabricate AA1050/TiC composite strips. Then, corrosion, mechanical, wear properties and microstructural evolution of them have been investigated via TiC Wt.%. All composite samples were fabricated after four cycles to get a uniform scattering of particles inside the metallic matrix. Moreover, density as a physical property and electrical resistivity and conductivity have been investigated vs particles value. The results showed that by increasing the particles value (Wt.%), hardness, density, corrosion and wear resistance of samples improved while their electrical conductivity, bonding strength and elongation decreased. For samples with 10[Formula: see text]Wt.% of TiC and in comparison with the monolithic sample, the hardness and tensile strength of composite samples improved 127% and 63%, respectively. Finally, SEM morphology of worn and corrosive surfaces has been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call