Abstract
The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water, which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45 °C, different hydrodynamic conditions, 1 h, and 24 h. A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time. The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water. The combined speed rotation of 600 rpm using a magnetic stirrer + 600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel. The stimulated emulsions made of hydrocarbon + oilfield-produced water and hydrocarbon + deionized water at 24 h increased the corrosion rate on X80 steel (0.34 mm/year and 0.43 mm/year, respectively), promoting the formation of erosion and pitting corrosion. These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon, oilfield-produced water, exposure times, and hydrodynamic systems in which the hydrocarbon was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.