Abstract

Anisotropic conductive adhesive films (ACF) have been widely studied for numerous applications. However, their resistance to corrosion in highly corrosive environments has been studied only very little. This study investigated the reliability and behaviour of ACFs in corrosive salt spray environment. ACF was used to attach flip chip (FC) components on FR4, liquid crystal polymer (LCP) and polyimide (PI) substrates and the FC packages were subjected to a salt spray test lasting 3000h. The FC packages had daisy chain structures which were measured continuously in real time during testing. After testing cross sections of the tested packages were examined using an optical microscope and a scanning electron microscope (SEM). Most components failed during the test and the results showed significant differences between the various substrate materials. The LCP substrate performed considerably better than the other substrates and the PI substrate proved to have the poorest reliability. Corrosion of the pads on the substrates as well as open joints was seen in all substrate materials. The corrosion behaviour as well as the differences between the substrates showed that the substrate structure and material are critical factors in corrosive environments and should be carefully considered. The reliability of the ACF FC package with the LCP substrate was found to be good, as the test was very severe and no failures occurred during the first 625h of testing and only 20% failed during the first 1000h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.