Abstract

Laboratory tests were conducted with a lanthanide borosilicate (LaBS) glass made with Frit B and added PuO2 (the glass is referred to herein as Pu LaBS-B glass) to measure the dependence of the glass dissolution rate on pH and temperature. These results are compared with the dependencies used in the Defense HLW Glass Degradation Model that was developed to account for HLW glasses in total system performance assessment (TSPA) calculations for the Yucca Mountain repository to determine if that model can also be used to represent the release of radionuclides from disposed Pu LaBS glass by using either the same parameter values that are used for HLW glasses or parameter values specific for Pu LaBS glass. Tests were conducted by immersing monolithic specimens of Pu LaBS-B glass in six solutions that imposed pH values between about pH 3.5 and pH 11, and then measuring the amounts of glass components released into solution. Tests were conducted at 40, 70, and 90 C for 1, 2, 3, 4, and 5 days at low glass-surface-area-to-solution volume ratios. As intended, these test conditions maintained sufficiently dilute solutions that the impacts of solution feedback effects on the dissolution rates were negligible in most tests. The glass dissolution rates were determined from the concentrations of Si and B measured in the test solutions. The dissolution rates determined from the releases of Si and B were consistent with the 'V' shaped pH dependence that is commonly seen for borosilicate glasses and is included in the Defense HLW Glass Degradation Model. The rate equation in that model (using the coefficients determined for HLW glasses) provides values that are higher than the Pu LaBS-B glass dissolution rates that were measured over the range of pH and temperature values that were studied (i.e., an upper bound). Separate coefficients for the rate expression in acidic and alkaline solutions were also determined from the test results to model Pu LaBS-B glass dissolution directly. The releases of Gd, Hf, and Pu from the glass were also measured. The release of Pu was significantly less than Si at all temperatures and pH values (on a normalized basis). More Gd than Pu or Hf was released from the glass in acidic solutions, but more Pu than Gd or Hf was released in alkaline solutions. Almost all of the released Gd remained in solution in tests conducted in Teflon vessels, whereas about half of the released Pu and Hf became fixed to the Teflon. In tests conducted in Type 304L stainless steel vessels, most of the released Gd, Hf, and Pu became fixed to the steel. The aqueous concentrations of Gd, Hf, and Pu decreased from about 2 x 10{sup -5}, 2 x 10{sup -8}, and 1 x 10{sup -7} M in tests solutions near pH 3.7 to about 1 x 10{sup -9}, 8 x 10{sup -10}, and 1 x 10{sup -8} M in test solutions near pH 10.8, respectively, in the 90 C tests in Teflon vessels (the solutions were not filtered prior to analysis). Vapor hydration tests (VHTs) were conducted at 120 and 200 C with Pu LaBS-B glass and SRL 418 glass, which was made to represent the HLW glass that will be used to macro-encapsulate LaBS glass within the waste form. Some VHTs were conducted with specimens of Pu LaBS-B and SRL 418 glasses that were in contact to study the effect of the solution generated as HLW glass dissolves on the corrosion behavior of Pu LaBS-B glass. Other VHTs were conducted in which the glasses were not in contact. The Pu LaBS-B glass is more durable than the HLW glass under these accelerating test conditions, even when the glasses are in contact. The presence of the SRL 418 glass did not promote the dissolution of the Pu LaBS-B glass significantly. However, Gd, Hf, and Pu were detected in alteration phases formed on the Pu LaBS-B glass surface and in (or on) phases formed by SRL 418 glass degradation, such as analcime. This indicates that Gd, Hf, and Pu were transported from the LaBS glass, through the water film formed on the specimens, and to the SRL 418 glass during the test. The disposition of the PuO{sub 2} inclusion phases as the Pu LaBS-B glass dissolved was not determined. They were observed in the glass underlying the alteration layers, but were not detected among the alteration phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.